PSO based Multidimensional Data Clustering: A Survey

نویسندگان

  • Jayshree Ghorpade-Aher
  • Vishakha Arun Metre
چکیده

Data clustering is considered as one of the most promising data analysis methods in data mining and on the other side KMeans is the well known partitional clustering technique. Nevertheless, K-Means and other partitional clustering techniques struggle with some challenges where dimension is the core concern. The different challenges associated with clustering techniques are preknowledge of initial centers of clusters, problem of stagnation, multiple cluster membership problem, dead unit problem, and slow or premature convergence to local search space. So as to resolve these clustering limitations, an eminent choice is to adapt the Swarm Intelligence (SI) inspired optimization algorithms. This paper presents an overview of the research on an applicability of different Particle Swarm Optimization (PSO) variants for clustering multidimensional data along with the basic concepts of PSO as well as data clustering. It also puts forward an idea of new and advance PSO variant in order to deal with multidimensional data clustering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering Multidimensional Data with PSO based Algorithm

Data clustering is a recognized data analysis method in data mining whereas K-Means is the well known partitional clustering method, possessing pleasant features. We observed that, K-Means and other partitional clustering techniques suffer from several limitations such as initial cluster centre selection, preknowledge of number of clusters, dead unit problem, multiple cluster membership and pre...

متن کامل

Application of Particle Swarm Optimization in Data Clustering: A Survey

Clustering is the process of organizing similar objects into groups, with its main objective of organizing a collection of data items into some meaningful groups. The problem of Clustering has been approached from different disciplines during the last few year's. Many algorithms have been developed in recent years for solving problems of numerical and combinatorial optimization problems. M...

متن کامل

Detection of lung cancer using CT images based on novel PSO clustering

Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...

متن کامل

Survey on Particle Swarm Optimization Based Web Mining

Web Mining is a challenging task that searches for Web access patterns, Web structures and the regularity and dynamics of the Web contents. It provides efficient Web Personalization, System Improvement, Site Modification, Business Intelligence and Usage Characterization. High-dimensional Web Log File clustering is a challenging task and requires an efficient clustering technique. The efficiency...

متن کامل

Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring

In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014